Six Sigma Green Belt Overview

Six Sigma has adopted the various belt levels of Karate; the Six Sigma Green Belt certification is designed to qualify the candidate to work in support of and under the supervision of a Six Sigma Black Belt. The Six Sigma Green Belt holder is involved in the implementation of all aspects of the Six Sigma methodology, but the requirements for certification are more fundamental in outlook. A Green Belt is required to have at least three years of work experience and successful completion of the certification test.

As with the Black Belt certification, Green Belt candidates must be adept in the conceptual approach of Bloom’s Taxonomy: remember, understand, apply, analyze, evaluate and create. The first part of the certification test requires knowledge of general Six Sigma goals and organizational components. The student must recognize the value of Six Sigma to the business enterprise, recognize the key profit drivers, and be able to define fundamental manufacturing concepts like value chain, theory of constraints, cycle time reduction, push and pull lines and failure effects measurement.

Twenty-five subsequent questions focus upon process management basics, including the collection and analysis of customer data and the identification of the stakeholders in a process. Failure mode and effects analysis; team functioning and dynamics; and the communication tools used to manage teams are vital to success in this area.

Statistics are important on the Green Belt certification exam; there are 30 questions devoted to data measurement and other statistical collection activities. The test poses questions on probability and the use of reliable statistics in decision-making. Process capability, results, and the degree to which statistical data deviated from the mean are also areas covered in this portion of the exam.

Analysis of studies and hypothesis testing methods comprises another 15 questions. The student must be able to interpret variables in data collection and create studies to interpret the differences between positional, cyclical, and temporary variations. There are 15 questions in the area of process improvement and control. Knowledge of basic terminology (e.g., dependent and independent variable, replication and repetition, and error deviation) is required. The student should be proficient in the techniques of brainstorming, chief effect analysis, multi-variant studies, FMEA (failure mode effects analysis), and the measurement of system capabilities.